Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Virus Evol ; 9(1): vead028, 2023.
Article in English | MEDLINE | ID: covidwho-20234910

ABSTRACT

Inference of effective population size from genomic data can provide unique information about demographic history and, when applied to pathogen genetic data, can also provide insights into epidemiological dynamics. The combination of nonparametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for nonparametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on nonparametric latent process models of population size dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control shape and smoothness of the population size over time. Our methodology is implemented in a new R package entitled mlesky. We demonstrate the flexibility and speed of this approach in a series of simulation experiments and apply the methodology to a dataset of HIV-1 in the USA. We also estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time within the phylodynamic model, we estimate the impact of the first national lockdown in the UK on the epidemic reproduction number.

2.
Nat Commun ; 14(1): 858, 2023 02 22.
Article in English | MEDLINE | ID: covidwho-2265965

ABSTRACT

The NHS COVID-19 app was launched in England and Wales in September 2020, with a Bluetooth-based contact tracing functionality designed to reduce transmission of SARS-CoV-2. We show that user engagement and the app's epidemiological impacts varied according to changing social and epidemic characteristics throughout the app's first year. We describe the interaction and complementarity of manual and digital contact tracing approaches. Results of our statistical analyses of anonymised, aggregated app data include that app users who were recently notified were more likely to test positive than app users who were not recently notified, by a factor that varied considerably over time. We estimate that the app's contact tracing function alone averted about 1 million cases (sensitivity analysis 450,000-1,400,000) during its first year, corresponding to 44,000 hospital cases (SA 20,000-60,000) and 9,600 deaths (SA 4600-13,000).


Subject(s)
COVID-19 , Mobile Applications , Humans , SARS-CoV-2 , State Medicine , Wales , Contact Tracing/methods , England
3.
Sci Rep ; 12(1): 12094, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1937445

ABSTRACT

The emergence of a novel pathogen in a susceptible population can cause rapid spread of infection. High prevalence of SARS-CoV-2 infection in white-tailed deer (Odocoileus virginianus) has been reported in multiple locations, likely resulting from several human-to-deer spillover events followed by deer-to-deer transmission. Knowledge of the risk and direction of SARS-CoV-2 transmission between humans and potential reservoir hosts is essential for effective disease control and prioritisation of interventions. Using genomic data, we reconstruct the transmission history of SARS-CoV-2 in humans and deer, estimate the case finding rate and attempt to infer relative rates of transmission between species. We found no evidence of direct or indirect transmission from deer to human. However, with an estimated case finding rate of only 4.2%, spillback to humans cannot be ruled out. The extensive transmission of SARS-CoV-2 within deer populations and the large number of unsampled cases highlights the need for active surveillance at the human-animal interface.


Subject(s)
COVID-19 , Deer , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/veterinary , Deer/virology , Environmental Monitoring , Humans , Risk Assessment , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
4.
Microb Genom ; 8(6)2022 06.
Article in English | MEDLINE | ID: covidwho-1909085

ABSTRACT

There is a need to identify microbial sequences that may form part of transmission chains, or that may represent importations across national boundaries, amidst large numbers of SARS-CoV-2 and other bacterial or viral sequences. Reference-based compression is a sequence analysis technique that allows both a compact storage of sequence data and comparisons between sequences. Published implementations of the approach are being challenged by the large sample collections now being generated. Our aim was to develop a fast software detecting highly similar sequences in large collections of microbial genomes, including millions of SARS-CoV-2 genomes. To do so, we developed Catwalk, a tool that bypasses bottlenecks in the generation, comparison and in-memory storage of microbial genomes generated by reference mapping. It is a compiled solution, coded in Nim to increase performance. It can be accessed via command line, rest api or web server interfaces. We tested Catwalk using both SARS-CoV-2 and Mycobacterium tuberculosis genomes generated by prospective public-health sequencing programmes. Pairwise sequence comparisons, using clinically relevant similarity cut-offs, took about 0.39 and 0.66 µs, respectively; in 1 s, between 1 and 2 million sequences can be searched. Catwalk operates about 1700 times faster than, and uses about 8 % of the RAM of, a Python reference-based compression and comparison tool in current use for outbreak detection. Catwalk can rapidly identify close relatives of a SARS-CoV-2 or M. tuberculosis genome amidst millions of samples.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Databases, Nucleic Acid , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , SARS-CoV-2/genetics , Software
5.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1642316

ABSTRACT

Since the start of the SARS-CoV-2 pandemic in late 2019, several variants of concern (VOC) have been reported to have increased transmissibility. In addition, despite the progress of vaccination against SARS-CoV-2 worldwide, all vaccines currently in used are known to protect only partially from infection and onward transmission. We combined phylogenetic analysis with Bayesian inference under an epidemiological model to infer the reproduction number (Rt) and also trace person-to-person transmission. We examined the impact of phylogenetic uncertainty and sampling bias on the estimation. Our result indicated that lineage B had a significantly higher transmissibility than lineage A and contributed to the global pandemic to a large extent. In addition, although the transmissibility of VOCs is higher than other exponentially growing lineages, this difference is not very high. The probability of detecting onward transmission from patients infected with SARS-CoV-2 VOCs who had received at least one dose of vaccine was approximate 1.06% (3/284), which was slightly lower but not statistically significantly different from a probability of 1.21% (10/828) for unvaccinated individuals. In addition to VOCs, exponentially growing lineages in each country should also be account for when tailoring prevention and control strategies. One dose of vaccination could not efficiently prevent the onward transmission of SARS-CoV-2 VOCs. Consequently, nonpharmaceutical interventions (such as wearing masks and social distancing) should still be implemented in each country during the vaccination period.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Evolution, Molecular , Genome, Viral , Global Health , Humans , Phylogeny , Public Health Surveillance , SARS-CoV-2/immunology , Vaccination
6.
Virus Evol ; 6(2): veaa082, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1388023

ABSTRACT

Since spilling over into humans, SARS-CoV-2 has rapidly spread across the globe, accumulating significant genetic diversity. The structure of this genetic diversity and whether it reveals epidemiological insights are fundamental questions for understanding the evolutionary trajectory of this virus. Here, we use a recently developed phylodynamic approach to uncover phylogenetic structures underlying the SARS-CoV-2 pandemic. We find support for three SARS-CoV-2 lineages co-circulating, each with significantly different demographic dynamics concordant with known epidemiological factors. For example, Lineage C emerged in Europe with a high growth rate in late February, just prior to the exponential increase in cases in several European countries. Non-synonymous mutations that characterize Lineage C occur in functionally important gene regions responsible for viral replication and cell entry. Even though Lineages A and B had distinct demographic patterns, they were much more difficult to distinguish. Continuous application of phylogenetic approaches to track the evolutionary epidemiology of SARS-CoV-2 lineages will be increasingly important to validate the efficacy of control efforts and monitor significant evolutionary events in the future.

7.
Innovation (Camb) ; 2(3): 100128, 2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1260882

ABSTRACT

SARS-CoV-2 has recently been found to have spread from humans to minks and then to have transmitted back to humans. However, it is unknown to what extent the human-to-human transmission caused by the variant has reached. Here, we used publicly available SARS-CoV-2 genomic sequences from both humans and minks collected in Denmark and the Netherlands, and combined phylogenetic analysis with Bayesian inference under an epidemiological model, to trace the possibility of person-to-person transmission. The results showed that at least 12.5% of all people being infected with dominated mink-derived SARS-CoV-2 variants in Denmark and the Netherlands were caused by human-to-human transmission, indicating that this "back-to-human" SARS-CoV-2 variant has already caused human-to-human transmission. Our study also indicated the need for monitoring this mink-derived and other animal source "back-to-human" SARS-CoV-2 in future and that prevention and control measures should be tailored to avoid large-scale community transmission caused by the virus jumping between animals and humans.

8.
Nat Commun ; 11(1): 5006, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834879

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first identified in late 2019 in Wuhan, Hubei Province, China and spread globally in months, sparking worldwide concern. However, it is unclear whether super-spreading events occurred during the early outbreak phase, as has been observed for other emerging viruses. Here, we analyse 208 publicly available SARS-CoV-2 genome sequences collected during the early outbreak phase. We combine phylogenetic analysis with Bayesian inference under an epidemiological model to trace person-to-person transmission. The dispersion parameter of the offspring distribution in the inferred transmission chain was estimated to be 0.23 (95% CI: 0.13-0.38), indicating there are individuals who directly infected a disproportionately large number of people. Our results showed that super-spreading events played an important role in the early stage of the COVID-19 outbreak.


Subject(s)
Coronavirus Infections/transmission , Disease Outbreaks , Pneumonia, Viral/transmission , Bayes Theorem , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL